

RouteViews

BGP Global Monitoring Infrastructure and Services

RouteViews

A collaborative router looking glass to share BGP views among network operators and researchers.

RouteViews was founded at the University of Oregon's Advanced Network Technology Center (ANTC) in 1995. Data archives began in 1997 and amount to 50TBs (compressed) today.

The group is currently led by the Network Startup Resource Center (NSRC) group engineering team at the University of Oregon.

RouteViews collaborates with the Center for Applied Internet Data Analysis (CAIDA) working with NSF grants that support *Designing a Global Measurement Infrastructure to Improve Internet Security*, GMI3S ([OAC-2131987](#)), and an *Integrated Library for Advancing Network Data Science*, ILANDS ([CNS-2120399](#)).

RouteViews is supported with financial and in-kind donations by multiple additional organizations:

<https://www.routeviews.org/routeviews/index.php/supporters/>

NSRC

NSRC supports the growth of global Internet infrastructure by providing engineering assistance, collaborative technical workshops, training, and other resources to university, research & education networks worldwide. NSRC is partially funded by the IRNC program of the NSF ([OAC-2029309](#)) and Google with other contributions from public and private organizations.

UNIVERSITY OF OREGON

The University of Oregon is a public research institution in Eugene, Oregon, USA founded in 1876. UO is renowned for its research prowess and commitment to teaching. Both NSRC and RouteViews are based at the UO.

Why RouteViews?


It's YOUR Internet

- Originally conceived in 1995 as a tool for Internet operators to look at the BGP table from different backbones and locations around the world to troubleshoot and to assess:
 - Reachability, hijacks, peer visibility, mass withdrawals, and RPKI status
- Operators who find it a valuable tool also peer to contribute to the value
- The 26-year data-set of BGP information archived by RouteViews since 1997 has become an invaluable research resource
 - RouteViews data has been used in over 1000 research papers.
 - <http://www.routeviews.org/routeviews/index.php/papers/>

RouteViews Collector Map

<http://www.routeviews.org/routeviews/index.php/map/>

Collector Deployment

Locations

- At Internet Exchange Points
 - Or DataCentres hosting major interconnections
- Goal is to maximise opportunities for Autonomous Networks to peer with the RouteViews collector
- There are also multi-hop collectors hosted at the University of Oregon

Collector

- One interface on the IXP peering LAN
 - Peering with operators who wish to supply a BGP feed to the RouteViews collector
- One interface for management and backhaul
 - Managing the collector
 - Sending the collected BGP table & BGP updates for archival at the University of Oregon

Collectors

Hardware	Hosted	Software
<p>Commodity</p> <ul style="list-style-type: none">• 1RU• 8-16 Cores• 32GB RAM• 400GB-1TB SSD• 2x 10 GB ethernet	<p>Virtual Machine</p> <ul style="list-style-type: none">• 4 vCPU• 32GB RAM• 200GB Storage• Peering Interface• Transit Interface	<p>OpenSource</p> <ul style="list-style-type: none">• Ubuntu LTS with FRR• Legacy: CentOS with Quagga
<p>Shipped to the IX</p> <ul style="list-style-type: none">• Last resort only	<p>Preferred option</p> <ul style="list-style-type: none">• Quicker to deploy• Easier to maintain• Easier to update	

Collector Deployment

Multi-hop

- Advantages
 - If you can reach the collector, you can peer.
- Disadvantages
 - Multi-hop peerings are subject to the routing anomalies RouteViews seeks to observe and archive.

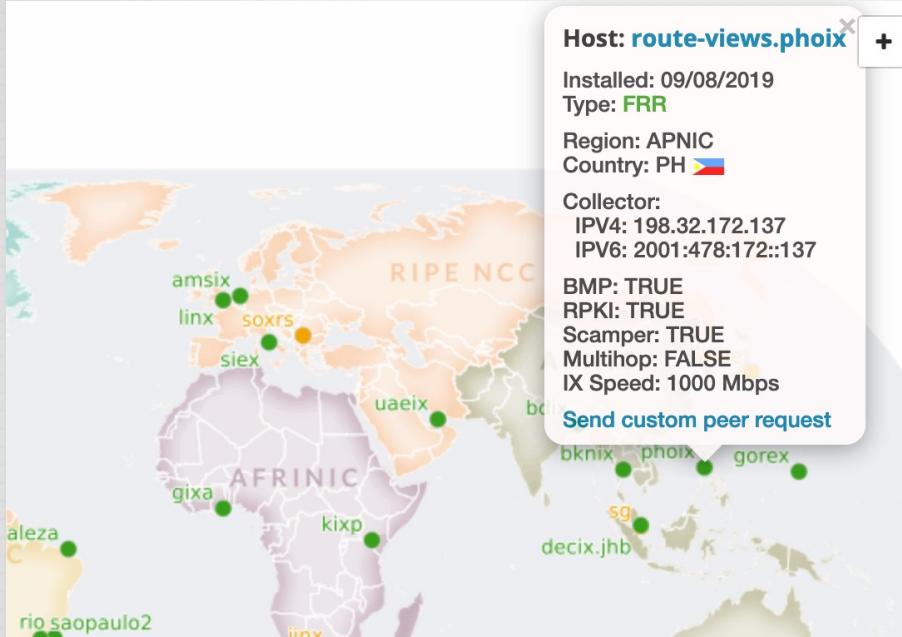
IX hosted/collocated

- Advantages
 - Better positioned to address multi-hop issues.
 - Geographic diversity.
 - Peering diversity.
 - Scalable.
- Disadvantages
 - More infrastructure to manage.

Collector Data

Multi-Threaded Routing Toolkit (MRT)

- <https://tools.ietf.org/html/rfc6396>
- MRT provides a standard for parsing or dumping routing information to a binary file.
- RouteViews Dumps consist of BGP RIBs and UPDATES
 - RIBs are archived every 2 hours
 - UPDATEs are archived every 15 minutes


Data Access

- MRT files are bzipped and rsynced back to <http://archive.routeviews.org/> on above schedule
- They can be accessed via http, ftp and rsync
- Map view tool is interactive

Direct BGP Monitoring Protocol Feed (BMP)

- New Model, in testing right now
- BMP upstream from collectors, not FROM peers

Collector Data

Index of /route-views.phoix/bgpdata

Name	Last modified	Size	Description
Parent Directory			
2019.08/	2019-08-08 22:58	-	
2019.09/	2019-08-28 23:01	-	
2019.10/	2019-09-28 23:01	-	
2019.11/	2019-10-28 23:01	-	
2019.12/	2019-11-28 23:01	-	
2020.01/	2019-12-28 23:01	-	
2020.02/	2020-01-28 23:01	-	
2020.03/	2020-02-28 23:01	-	
2020.04/	2020-03-28 23:01	-	
2020.05/	2020-04-28 23:01	-	

<http://archive.routeviews.org/route-views.phoix/bgpdata/>

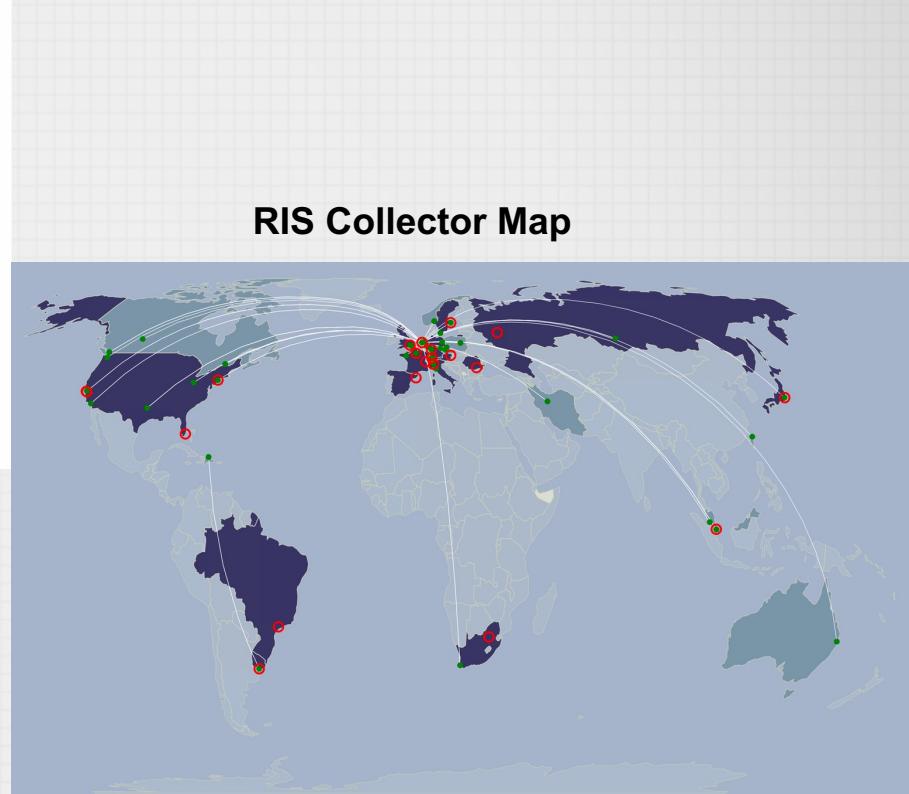
Peering HowTo

BGP Configuration

- Please send full-table if you are able to
- Please do not send:
 - Default route
 - Private address space
- We do not accept/want ADD-PATH TX/RX
- We do not send any routes to you
- When peering with multi-hop collectors, remember to set ebgp-multihop

MRT Tools

BGPKIT, RIPE LIBBGPDUMP, NTT BGPDUMP2, etc


- <https://bgpkit.com/>
<https://bgpkit.com/parser>
(BGP toolkit written in Rust)
- <https://github.com/bgpkit>
<https://github.com/bgpkit/bgpkit-parser>
<https://github.com/bgpkit/peer-stats>
<https://github.com/bgpkit/pybgpkit>
- <https://github.com/RIPE-NCC/bgpdump>
(Last updated 2020)
- <https://github.com/cawka/bgpparser>
(Last updated 2015 😞)
- <https://github.com/yasuhiro-ohara-ntt/bgpdump2>
(python)
- <https://github.com/t2mune/mrtparse>
(perl) (Last updated 2014 😞)
- <https://github.com/rfc1036/zebra-dump-parser>

Route Collection: Global Community Cooperation

RouteViews Collector Map

- Extends coverage
- Provides Redundancy
- Complimentary Services
- Common files/tools

Operations

Access

- BGP is the backbone of the Global Routing Infrastructure.
- To ensure its stability, it needs to be constantly monitored.
- RouteViews provides:
 - Command-Line/Looking Glass
 - Prefix Visibility, Verify Convergence, Path Stability
 - Comparing Local/Regional/Global Views
 - Troubleshooting Reachability
 - Access to historical BGP data, i.e. “When did this happen??”

Operations

Accessing a Collector

- `telnet://route-views*.routeviews.org`
- No username necessary.
- Users are able to run show commands, e.g. `show ip bgp x.x.x.x`
- Telnet access is rate-limited to prevent automation overuse
- PLEASE don't script. There is an API for that (<http://api.routeviews.org>).

Gotchas

- Why not SSH?
 - RouteViews data are publicly available. We've got nothing to hide.
- `show ip route x.x.x.x next-hop` is incorrect!
 - Remember, this is a collector
 - There's no data-plane, thus no true FIB
 - Kernel default-route points to transit provider next-hop

Operations

CLI Access

- Worldwide CLI access – how to access a collector
- <telnet://route-views.routeviews.org>
 - route-views, route-views{2,3,4,6} are all housed at University of Oregon in the United States, and each collector has eBGP Multihop sessions with peers from around the world
- Legacy Naming Scheme
 - <telnet://route-views.phoix.routeviews.org>
 - Other collector locations accessible via these 3rd level domains (replace “phoix”): amsix, eqix, telxatl, bknix, soxrs, chicago, bdix, uaeix, fortaleza, gixa, gorex, mwix, jinx, jhb, napafrica, peru, linx, flix, kixp, ny, isc, perth, nwax, rio, siex, sfmix, chile, saopaulo, sg, sydney & wide
- New Naming Scheme
 - (exchange).(closest airport).routeviews.org
 - ie: decix.jhb.routeviews.org – DE-CIX Asia, Johor Bahru

Operations

Looking Glass

- Looking Glass front-end as an alternative access is being tested
- This will likely replace the telnet access in the near future

The screenshot shows the 'Looking Glass' interface. At the top, there is a red button with the text 'ROUTE VIEWS' and the number '6447'. Below the button, the title 'Looking Glass' is displayed. The main area contains a form for querying the network. The 'TYPE OF QUERY' section includes radio buttons for 'bgp', 'bgp regexp', 'rpki table', 'rpki prefix', 'rpki ASN', 'ping', and 'traceroute'. The 'bgp' option is selected. The 'ADDITIONAL PARAMETERS' section contains a text input field. The 'NODE' section is a dropdown menu listing various network nodes, each with a corresponding URL. The 'route-views' node is selected and highlighted in blue. The dropdown menu includes: RouteViews (Uni of Oregon), Accra (GIXA), Amsterdam (AMS-IX), Asburn (Equinix), Atlanta (TELX), Bangkok (BKNIX), Belgrade (SOXRS), Chicago (Equinix), Dhaka (BDIX), and Dubai (UAEIX). At the bottom of the interface, a dark blue bar contains the text: 'Disclaimer: All commands are logged for possible analysis and statistics please disconnect now.'

TYPE OF QUERY	ADDITIONAL PARAMETERS	NODE
<input checked="" type="radio"/> bgp		RouteViews (Uni of Oregon)
<input type="radio"/> bgp regexp		✓ route-views
<input type="radio"/> rpki table		Accra (GIXA)
<input type="radio"/> rpki prefix		route-views.gixa
<input type="radio"/> rpki ASN		Amsterdam (AMS-IX)
<input type="radio"/> ping		route-views.amsix
<input type="radio"/> traceroute		Asburn (Equinix)
IPv4		route-views.eqix

Submit Reset

Disclaimer: All commands are logged for possible analysis and statistics
please disconnect now.

- ✓ route-views
- Accra (GIXA)
route-views.gixa
- Amsterdam (AMS-IX)
route-views.amsix
- Asburn (Equinix)
route-views.eqix
- Atlanta (TELX)
route-views.telxatl
- Bangkok (BKNIX)
route-views.bknix
- Belgrade (SOXRS)
route-views.soxrs
- Chicago (Equinix)
route-views.chicago
- Dhaka (BDIX)
route-views.bdix
- Dubai (UAEIX)
route-views.uaeix

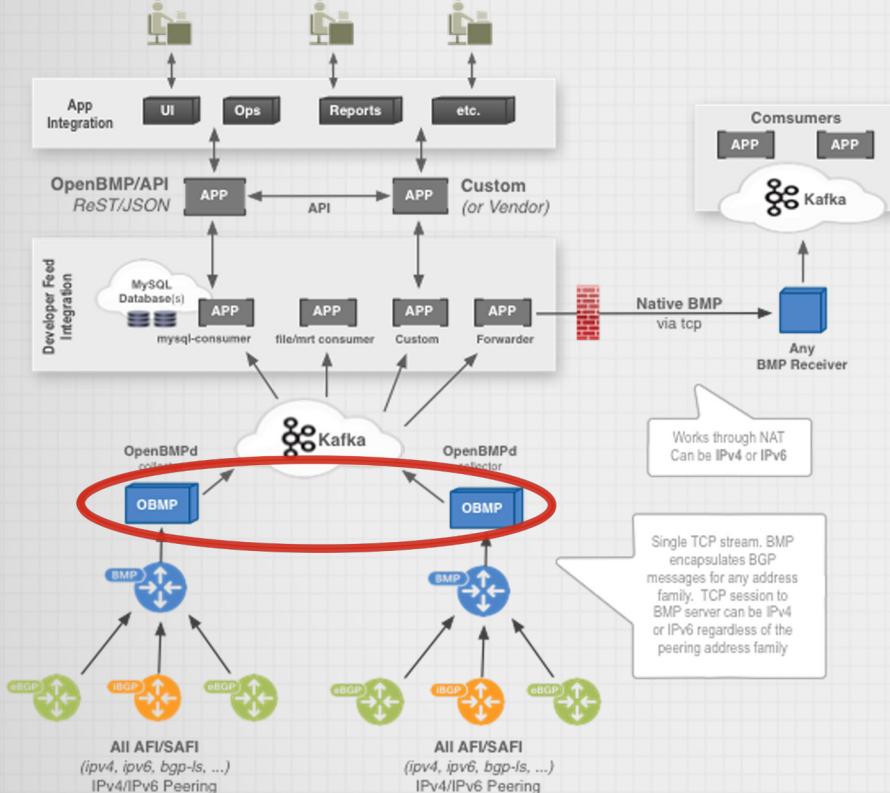
Use Cases

New(er) Collector Features

BMP

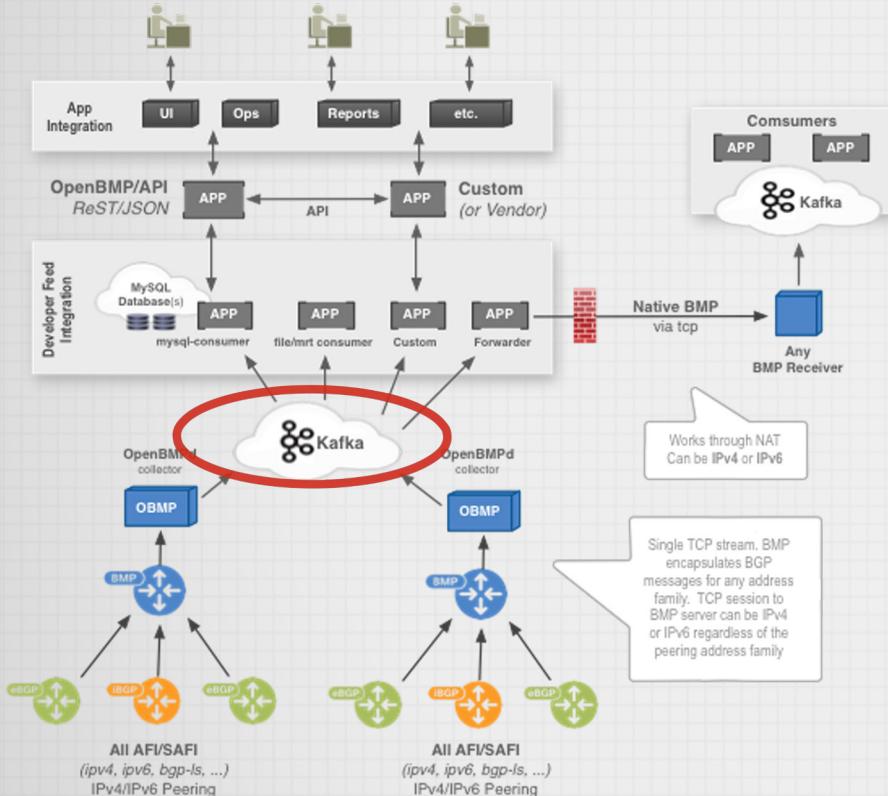
- BMP data will feed tools like BGPSStream and ARTEMIS.
- Or write your own Kafka consumer for raw BMP data.
- Limited access during trial period.
- Wider availability to follow on completion of trials.

RPKI


- RPKI data is accessible directly from the collectors.
- We also are establishing an archive of RPKI ROA data.
- Working on back-filling that data set from the RIR/CAs.

Use Cases

BGP Data Distribution


- “Message-based” data distribution (Kafka)
 - Real-time streaming telemetry
 - Per-message timestamps, with meta-data
 - Middle-layer abstraction, multi-client access (facilitates analysis and services)
 - Automated consolidating and sequencing
- RPKI validation and archival

BMP & Open/GoBMP

- BGP Monitoring Protocol (BMP) is an IETF standard: RFC7854
 - Available now – (Cisco, Juniper, Arista & FRR)
 - Consolidates peers/collectors
 - Splits collector, peer and update messages into separate streams
- OpenBMP is OpenSource (under the Linux Foundation)
 - Latest update: 2018 😞
- GoBMP
 - Latest update: September 2022 😊

Apache Kafka

Apache Kafka comprises the message bus for OpenBMP

- Proven to scale
- Mature client API
 - Clients in 16 different programming languages
- Send email to:
 - help@routeviews.org

Use Cases

BGPStream is a project of CAIDA group at UC San Diego:
<https://bgpstream.caida.org>

BGPReader

Generate ASCII output

Eyeball raw data

Shell one-liners

BGPReader is the simplest interface to BGPStream: a command-line tool for extracting BGP measurement data in ASCII format. It can also be used as a drop-in replacement for the legacy [bgpdump](#) tool.

Use Cases

BGPStream is a project of CAIDA group at UC San Diego:
<https://bgpstream.caida.org>

APIs

libBGPStream

Develop C/C++ code

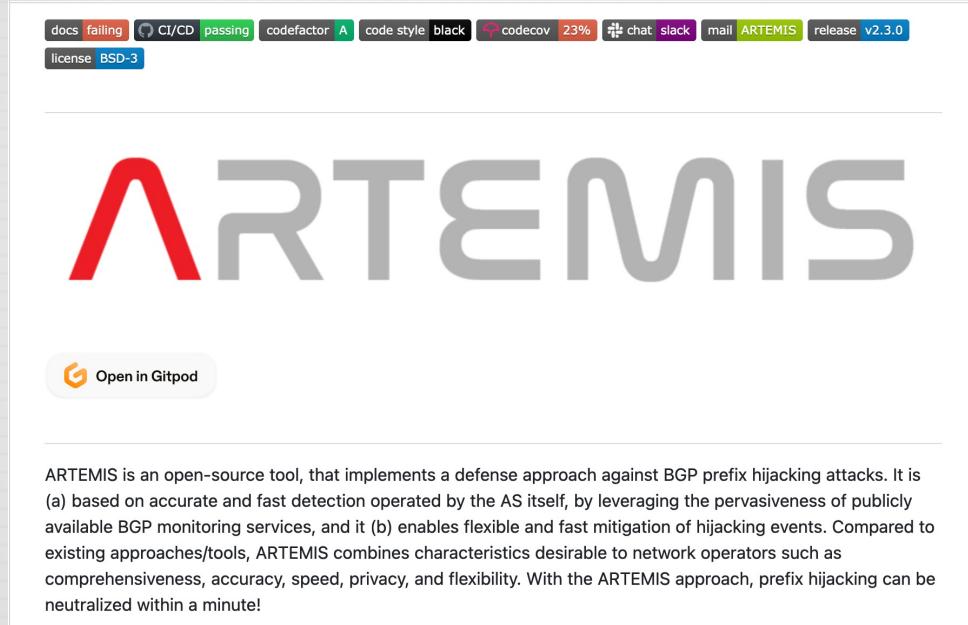
✓ Build efficient tools

✓ Build complex infrastructure

libBGPStream is the central library of the BGPStream framework. It is written in C and presents a simple API for configuring and reading a stream of BGP measurement data. All BGPStream tools as well as the PyBGPStream API make use of libBGPStream.

PyBGPStream

Develop Python code


✓ Rapid prototyping

✓ Ad-hoc analysis

PyBGPStream is Python package that provides bindings to the libBGPStream library, allowing Python scripts to configure and read a stream of BGP measurement data.

Use Cases

Other Open Source Tools: Artemis

The screenshot shows the GitHub repository page for Artemis. At the top, there are several status indicators: 'docs failing' (red), 'CI/CD passing' (green), 'codefactor A' (green), 'code style black' (green), 'codecov 23%' (green), 'chat slack' (green), 'mail ARTEMIS' (green), 'release v2.3.0' (green), and 'license BSD-3' (green). Below these is a large, stylized logo for 'ARTEMIS' with 'ARTEMIS' in grey and 'A' in red. Under the logo is a button labeled 'Open in Gitpod'. A horizontal line separates this from the main content. Below the line, a paragraph of text describes Artemis as an open-source tool for BGP prefix hijacking detection and mitigation.

ARTEMIS is an open-source tool, that implements a defense approach against BGP prefix hijacking attacks. It is (a) based on accurate and fast detection operated by the AS itself, by leveraging the pervasiveness of publicly available BGP monitoring services, and it (b) enables flexible and fast mitigation of hijacking events. Compared to existing approaches/tools, ARTEMIS combines characteristics desirable to network operators such as comprehensiveness, accuracy, speed, privacy, and flexibility. With the ARTEMIS approach, prefix hijacking can be neutralized within a minute!

- An open-source tool to monitor, detect, and mitigate BGP hijacks
- Real-time detection and notifications of BGP prefix hijacking attacks/events
- <https://github.com/FORTH-ICS-INSPIRE/artemis>

Use Cases

Other Open Source Tools: BGPKIT

- BGPKIT Parser
 - Rust-based MRT/BGP Data Parser
- BGPKIT Broker
 - REST API for searching archive files across public data collection projects. Data updated in real-time.
- BPPKIT Monocle
 - A commandline application to search, parse, and process BGP information in public sources
- <https://bgpkit.com/>

Use Cases

Not so Open Source Tools...

TECH

Cisco acquires ThousandEyes for around \$1 billion to make deeper push into software

PUBLISHED THU, MAY 28 2020 4:38 PM EDT | UPDATED THU, MAY 28 2020 5:51 PM EDT

Ari Levy
@LEVYNEWS

Jordan Novet
@JORDANNOVET

SHARE

Use Cases

Operations

```
route-views2.routeviews.org> sh ip bgp sum
```

77 peers, multi-hop

```
IPv4 Unicast Summary (VRF default):  
BGP router identifier 128.223.51.102, local AS number 6447 vrf-id 0  
BGP table version 53814890  
RIB entries 1867939, using 342 MiB of memory  
Peers 77, using 54 MiB of memory
```

Neighbor	V	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd	PfxSnt	Desc
4.68.4.46	4	3356	0	36081	0	0	0	never	Active	0	Level3
5.101.110.2	4	14061	0	0	0	0	0	never	Connect	0	DIGITALOCEAN
12.0.1.63	4	7018	22762421	72706	0	0	0	2d13h50m	918220	0	ATT
37.139.139.17	4	57866	15583523	146075	0	0	0	4d03h24m	920755	0	Fusix
43.226.4.1	4	63927	0	0	0	0	0	never	Connect	0	Rise
45.61.0.85	4	22652	21203029	146091	0	0	0	4d03h25m	921946	0	FIBRENOIRE
62.115.128.137	4	1299	63541287	73041	0	0	0	4d03h23m	903897	0	Telia
64.71.137.241	4	6939	20081396	73037	0	0	0	13:06:54	943729	0	Hurricane Electric
64.71.255.61	4	812	0	0	0	0	0	never	Connect	0	Sprint
66.185.128.1	4	1668	0	0	0	0	0	never	Connect	0	AOL
67.219.192.18	4	19653	0	0	0	0	0	never	Active	0	CTSTelecom
68.67.63.245	4	22652	0	0	0	0	0	never	Active	0	FIBRENOIRE
80.241.176.31	4	20771	0	0	0	0	0	never	Connect	0	CAUCASUS
85.114.0.217	4	8492	25929838	146099	0	0	0	01w1d10h	932986	0	OBITRU
87.121.64.4	4	57463	5292260	72989	0	0	0	4d03h16m	443778	0	NETIXLTD
89.149.178.10	4	3257	21296299	73041	0	0	0	4d03h22m	918375	0	Tiscali
91.209.102.1	4	39756	0	0	0	0	0	never	Connect	0	HOSTWAY-RO
91.218.184.60	4	49788	28486819	73045	0	0	0	01w1d03h	923119	0	NEXTHOPNO

Not all peers are up.. 😞

Lots of full tables

Use Cases

Operations

BGP routing table entry for 41.77.223.0/24, version 53271

Paths: (29 available, best #2, table default)

Not advertised to any peer

23673 6939 33763 37447

203.189.128.233 from 203.189.128.233 (203.189.128.233)

Origin IGP, valid, external, rpki validation-state: not found

Community: 23673:50 23673:4636 23673:65401

Last update: Sat Oct 28 00:55:33 2023

What is AS37447 trying to achieve by prepending 97 times??

89.149.178.10 from 89.149.178.10 (213.200.83.26)

Origin incomplete, metric 10, valid, external, rpki validation-state: not found

Community: 3257:2993 3257:4000 3257:8027 3257:50001 3257:50110 3257:54400 3257:54401 65000:174 65000:1299 65000:3356 65000:4134

65000:10429

Last update: Fri Oct 27 01:38:19 2023

1299 6939 6939 33763 37447

62.115.128.137 from 62.115.128.137 (2.255.254.88)

Origin IGP, valid, external, rpki-validation-state: not found

Last update: Wed Oct 25 14:02:01 2023

Use Cases

Invalid ROAs

```
I* 36.90.220.0/23 203.189.128.233
I* 212.66.96.126
I* 94.156.252.18
I*> 85.114.0.217
```

0

AS64503 – this is RFC5398
Documentation ASN!

```
0 23673 55329 9304 7713 64503 i
0 20912 49367 6762 7713 64503 i
0 34224 6762 7713 64503 i
0 8492 3216 7713 64503 i
```

```
I* 43.255.37.0/24 203.189.128.233
I* 64.71.137.241
I* 12.0.1.63
I* 105.16.0.247
I* 212.66.96.126
I* 94.156.252.18
I*> 129.250.1.71
```

0
0

AS64021 & AS137451
are origins?

```
0 23673 55329 6939 7473 9381 64021 i
0 6939 7473 9381 64021 i
0 7018 2914 64050 137451 i
0 37100 2914 64050 137451 i
0 20912 3257 2914 64050 137451 i
0 34224 6453 9381 64021 ?
0 2914 64050 137451 i
```

Use Cases

Invalid ROAs

Whois says:

```
% whois -h jwhois.apnic.net 43.255.37.0/24
...
inetnum:          43.0.0.0 - 43.255.255.255
netname:          APNIC-AP-ERX
descr:            Asia Pacific Network Information Center, Pty. Ltd.
descr:            Regional Internet Registry for the Asia-Pacific Region
...
remarks:          This /8 was transferred from ARIN to APNIC on 30 Oct 2007
remarks:          The original message for this range is as below.
remarks:          Japan Inet has advised IANA to delegate the management of this /8 to APNIC.
remarks:          OrgName: Japan Inet
remarks:          OrgID: JAPANI
remarks:          Address: Kokusai-Kougyou-Kanda Bldg.
remarks:          Address: 2-3-4 Uchikanda
remarks:          Address: Chiyoda-ku
remarks:          City: Tokyo
remarks:          Country: JP
...
remarks:          RTechHandle: ZI92-ARIN
remarks:          RTechName: IPv6 Promotion Council of Japan
remarks:          RTechPhone: +81-3-3548-2601
remarks:          RTechEmail: admin@v6nic.net
```

43/8 was used by IPv6 Promotion Council of Japan for IPv6 transition experimental purposes

No specific entry for this /24 in any RIR database

Uses Cases

Invalid ROAs

```
route-views2.routeviews.org> sh rpki prefix-table | include ^43.255
```

```
...
43.255.30.0          24 - 24  133199
43.255.30.0          24 - 24  133861
43.255.31.0          24 - 24  133199
43.255.31.0          24 - 24  133861
43.255.24.0          22 - 22  18119
43.255.36.0          22 - 22  0
43.255.53.0          24 - 24  59214
43.255.52.0          24 - 24  59214
43.255.54.0          24 - 24  59214
...

```

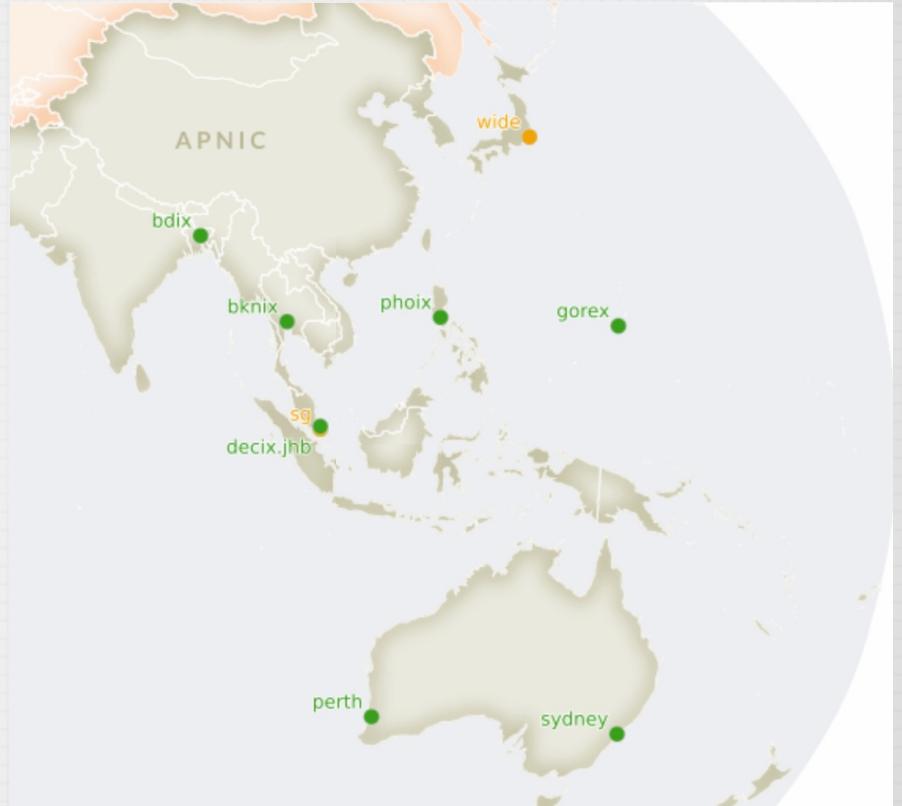
This /22 is in APNIC's AS0 TAL
– meaning it is unassigned
(classed as a bogon)

RouteViews validators include LACNIC's and APNIC's AS0 TALs – so RouteViews `sh bgp` output can indicate prefixes in the BGP table that are flagged by the RIRs as unassigned.

Hence the invalid ROA displayed for 43.255.37.0/24

AS64021 & AS137451 are both announcing part of an IP address block that is not theirs to use.

Other Bits


RouteViews email list

- <https://lists.nsrc.org/listinfo/routeviews-users>
- Also available on the Contact page at routeviews.org
- A place to ask questions and receive updates on RouteViews activities.
- Hosted by the wonderful folks at NSRC.

RouteViews in Asia

Looking for new Views

- The RouteViews team is continually on the lookout for new locations
- More views means better troubleshooting and diagnosis of the global BGP routing system
- Preferences:
 - At an IX
 - Rich variety of domestic, regional, and international peers
 - IPv4 & IPv6 (of course!)
 - Host willing to **sponsor** either a VM or the hosting of a 1RU server

RouteViews Impact

Geoff Huston wrote in his report, “BGP in 2022 – the routing table”:

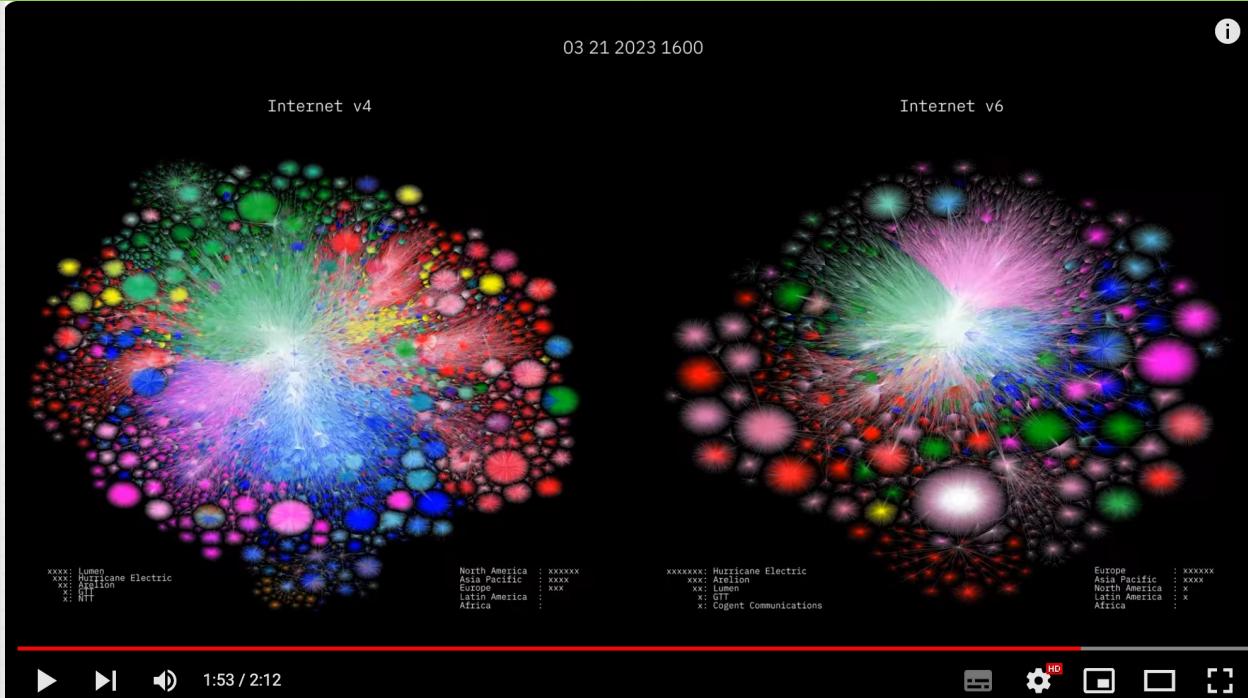
“I should take a moment to mention the [RouteViews Project](#). It was originally intended to offer a multi-perspective real-time view of the inter-domain routing system, allowing network operators to examine the current visibility of route objects from various points in the inter-domain topology.

*What makes RouteViews so unique is that it archives these routing tables every two hours and has done so for more than two decades. It also archives every BGP update message. **This vast collection of data is a valuable research data source in its own right**, and here we are just taking a tiny slice of this data set to look at longer-term routing growth trends.*

The folk at the RouteViews Project, with support from the University of Oregon and the US National Science Foundation, should be commended for their efforts here. This is a very unique data set if you are interested in the evolution of the Internet over the years.”

RouteViews Impact

Aftab Siddiqui


*"The MANRS Observatory relies heavily on BGPStream and GRIP for the detection of BGP related incidents such as BGP Leaks and BGP mis-origination. It is also very critical to verify that any incident highlighted by these services can be verified independently and to do that **we require raw BGP data which is made available by 2 sources: RIPE RIS and RouteViews**. Diversity of data sources is once again very important to verify any such incidents. NSRC, which manages the RouteViews project, ensures that the routing data they provide is accurate and they have promptly addressed any issues or concerns raised by the MANRS team, whether it is related to changes in the MRT format causing problems in data parsing or helping with BMP data. **Actively maintaining RouteViews provides community service by NSRC.***

MANRS has gained a lot of good reputation in the community due to the support and expertise provided by its partners such as NSRC. NSRC included MANRS Action explanation and implementation guidelines in their training courses for network operators and R&E networks, in their technical video content, and has been promoting various MANRS programs to respective communities specifically in Asia Pacific and Africa where the MANRS participation is low as compared to other regions."

RouteViews Impact

Barrett Lyon:

<https://www.youtube.com/watch?v=vo5gIK9czIE>

= **THANK YOU**

Questions?