Securing Internet Routing: The Puzzle Pieces

BPF2024 | 30 May 2024 | Bangkok

Tashi Phuntsho

Network Engineer/Trainer @NSRC

Acknowledgment

- Slides/ideas from
 - Randy Bush (IIJ Labs/Arrcus)
 - Geoff Huston (APNIC)
 - Aftab Siddiqui (ISOC)
 - Job Snijders (Fastly)
 - Alexander Azimov (Yandex)
 - Alexander Lyamin (Qrator)
 - Yoshinobu Matsuzaki (IIJ/APNIC)

Headlines/Incidents

- NO ONE is in charge?
 - No single authority point for the Internet
 - No REFERENCE point for what's RIGHT in routing

- Routing works by RUMOUR
 - TELL what you know to your neighbours/LEARN what your neighbours know
 - Assume everyone is CORRECT/HONEST
 - *Is the originating network the rightful owner?*

- Routing works in REVERSE
 - What you TELL others (outbound adv) affects inbound traffic
 - What you TRUST and ACCEPT (inbound adv) affects outbound traffic

- And sadly, there is no EVIL (E-bit) bit
 - RFC3514 was a humorous attempt

- Since a bad routing update does not identify itself as BAD:
 - Can we identify GOOD updates?
 - How do we identify what is GOOD?

Identifying GOOD

- Back to basics can we use Digital Signatures to convey the Authority to use?
 - Private key to sign the Authority, and
 - Public key to validate the Authority

If the holder of the resource has the private key, it can sign/authorise the use of the resource(s)!

Identifying GOOD

 Ok, let us use digital signatures, but how do we establish TRUST in this framework?

- Follow the numbered resource allocation

hierarchy

Regional Internet Registries
(RIRs)

CERT (CA)

National IRs

CERT (EE)

ISP

ISP

• WHOIS lookup - to verify the holder of a resource(s)

```
whois -h whois.apnic.net 202.144.128.0
% [whois.apnic.net]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html
% Information related to '202.144.128.0 - 202.144.129.255'
% Abuse contact for '202.144.128.0 - 202.144.129.255' is 'systems@bt.bt'
                202.144.128.0 - 202.144.129.255
inetnum:
netname:
                DRUKNET
                DrukNet System
descr:
descr:
                DrukNet
                Bhutan Telecom
descr:
descr:
                Thimphu
country:
                JT106-AP
admin-c:
tech-c:
                JT106-AP
abuse-c:
                AB1276-AP
status:
                ASSIGNED NON-PORTABLE
mnt-by:
                MAINT-BT-DRUKNET
                IRT-BTTELECOM-BT
mnt-irt:
last-modified: 2021-01-14T06:15:57Z
                APNIC
source:
```

```
% Information related to 'AS18024'
% Abuse contact for 'AS18024' is 'systems@bt.bt'
                AS18024
aut-num:
                BTTELECOM-AS-AP
as-name:
                Bhutan Telecom Ltd
descr:
country:
                ORG-BTL2-AP
                DN01-AP
admin-c:
tech-c:
                DN01-AP
                AB1276-AP
abuse-c:
                MAINT-BT-DRUKNET
mnt-lower:
mnt-routes:
                MAINT-BT-DRUKNET
                APNIC-HM
mnt-by:
                IRT-BTTELECOM-BT
mnt-irt:
last-modified: 2021-01-14T06:16:00Z
source:
                APNIC
```

```
% Information related to '202.144.128.0/20AS18024'
                202.144.128.0/20
route:
descr:
                 DRUKNET-BLOCK-A1
                 BT
country:
notify:
                 ioc@bt.bt
mnt-by:
                MAINT-BT-DRUKNET
origin:
                 AS18024
last-modified: 2018-09-18T09:37:40Z
                 APNIC
source:
                                                               Network Startup Resource Center
```


• <u>IRR</u> (Internet Routing Registry) lookup

- Publish my routing intent (route origination) and in some cases, inter-AS routing policies

```
whois -h whois.radb.net 202.144.128.0
            202.144.128.0/23
route:
descr:
           DRUKNET-VSNL Route Object
            AS17660
origin:
mnt-by:
           MAINT-VSNL-IN
changed:
            ip.admin@vsnl.co.in 20070102
            RADB
source:
                202.144.128.0/20
route:
                DRUKNET-BLOCK-A1
descr:
                BT
country:
notify:
                ioc@bt.bt
mnt-by:
                MAINT-BT-DRUKNET
                AS18024
origin:
last-modified: 2018-09-18T09:37:40Z
source:
                APNIC
```

```
whois -h whois.radb.net AS17660
aut-num:
               AS17660
as-name:
               BT-Bhutan
descr:
               Divinetworks for BT
admin-c:
               DUMY-RIPE
tech-c:
               DUMY-RIPE
status:
               0THER
mnt-bv:
               YP67641-MNT
mnt-by:
               ES6436-RIPE
created:
               2012-11-29T10:31:33Z
last-modified: 2018-09-04T15:26:24Z
source:
               RIPE-NONAUTH
               **********
remarks:
remarks:
               * THIS OBJECT IS MODIFIED
               * Please note that all data that is generally regarded as personal
remarks:
               * data has been removed from this object.
remarks:
               * To view the original object, please query the RIPE Database at:
remarks:
               * http://www.ripe.net/whois
remarks:
                *********
remarks:
aut-num:
               AS17660
               DRUKNET-AS
as-name:
               DrukNet ISP
descr:
descr:
               Bhutan Telecom
descr:
               Thimphu
country:
               BT
import:
               from AS6461 action pref=100; accept ANY
               to AS6461 announce AS-DRUKNET-TRANSIT
export:
import:
               from AS2914 action pref=150; accept ANY
               to AS2914 announce AS-DRUKNET-TRANSIT
export:
               from AS6453 action pref=100; accept ANY
import:
               to AS6453 announce AS-DRUKNET-TRANSIT
export:
               from AS42 action pref=250; accept AS42
import:
```

- IRR (Internet Routing Registry) entries
 - Helps craft route filters (prefix/as-path)

with RPSL tools (rtconfig/bgpq3-4)

```
bgpq4 -bl PEERv4-IN AS17660
PEERv4-IN = [
    45.64.248.0/22,
    103.245.240.0/22,
    103.245.242.0/23,
    119.2.96.0/19,
    202.144.128.0/19,
    202.144.128.0/20,
    202.144.128.0/23,
    202.144.144.0/20,
    202.144.148.0/22
   bgpg4 -S APNIC -bl PEERv4-IN AS17660
PEERv4-IN = [
    45.64.248.0/22,
    103.245.240.0/22,
    103.245.242.0/23,
    119.2.96.0/19,
    202.144.128.0/19
     bgpq4 -6bl PEERv6-IN AS17660
    PEERv6-IN = [
        2405:d000::/32.
        2405:d000:7000::/36

→ bgpq4 -S APNIC -6bl PEERv6-IN AS17660

     PEERv6-IN = [
        2405:d000::/32.
        2405:d000:7000::/36
```

```
bapa4 -l BTv4-IN AS-DRUKNET-TRANSIT

    bgpg4 −6l BTv6−IN AS−DRUKNET−TRANSIT

no ip prefix-list BTv4-IN
                                                    no ipv6 prefix-list BTv6-IN
ip prefix-list BTv4-IN permit 27.123.224.0/19
                                                    ipv6 prefix-list BTv6-IN permit 2001:df3:e180::/48
ip prefix-list BTv4-IN permit 27.123.224.0/22
                                                    ipv6 prefix-list BTv6-IN permit 2001:df5:a300::/48
ip prefix-list BTv4-IN permit 27.124.64.0/20
                                                    ipv6 prefix-list BTv6-IN permit 2400:1440::/32
ip prefix-list BTv4-IN permit 27.124.64.0/22
                                                    ipv6 prefix-list BTv6-IN permit 2400:4e60::/32
ip prefix-list BTv4-IN permit 27.124.68.0/22
                                                    ipv6 prefix-list BTv6-IN permit 2400:4e60::/33
ip prefix-list BTv4-IN permit 27.124.72.0/22
                                                    ipv6 prefix-list BTv6-IN permit 2400:4e60:8000::/33
ip prefix-list BTv4-IN permit 27.124.76.0/22
                                                    ipv6 prefix-list BTv6-IN permit 2403:580::/32
ip prefix-list BTv4-IN permit 43.230.208.0/24
                                                    ipv6 prefix-list BTv6-IN permit 2403:580::/33
ip prefix-list BTv4-IN permit 45.64.248.0/22
                                                    ipv6 prefix-list BTv6-IN permit 2403:580:8000::/33
ip prefix-list BTv4-IN permit 45.64.248.0/23
                                                    ipv6 prefix-list BTv6-IN permit 2403:8700::/32
ip prefix-list BTv4-IN permit 45.64.250.0/24
                                                    ipv6 prefix-list BTv6-IN permit 2404:5540::/32
ip prefix-list BTv4-IN permit 45.64.251.0/24
                                                    ipv6 prefix-list BTv6-IN permit 2404:5540::/33
ip prefix-list BTv4-IN permit 103.7.252.0/22
  prefix-list BTv4-IN permit 103.10.236.0/22
                                                    ipv6 prefix-list BTv6-IN permit 2404:5540::/34
               bapa3 -3f 17660 -l BT-IN AS-DRUKNET-TRANSIT
            no ip as-path access-list BT-IN
            ip as-path access-list BT-IN permit ^17660(_17660)*$
            ip as-path access-list BT-IN permit ^17660(_[0-9]+)*_(18024|18025|59219|132232)$
            ip as-path access-list BT-IN permit ^17660(_[0-9]+)*_(134715|135666|137925|137994)$
            ip as-path access-list BT-IN permit ^17660( [0-9]+)* (140695)$

    □ bgpg4 -f 1/660 -l BT-IN AS-DRUKNET-TRANSIT

            no ip as-path access-list BT-IN
```

ip as-path access-list BT-IN permit ^17660(_[0-9]+)*_(18024|18025|59219|132232)\$

ip as-path access-list BT-IN permit ^17660([0-9]+)* (134715|135666|137925|137994)\$

ip as-path access-list BT-IN permit ^17660(17660)*\$

ip as-path access-list BT-IN permit ^17660([0-9]+)* (140695)\$

- Issues with IRR
 - No single authority model
 - Is an entry genuine/correct?
 - Too many RRs
 - If two RRs contain conflicting data which one to use/trust?
 - Incomplete data
 - If a route is not in a RR ~ invalid or is the RR just missing data?

- Issues with IRR Filters
 - Your filters ONLY as good as the correctness of the IRR entries!
 - GOOD idea to rely on authoritative sources:
 - -S in bgpq3/4, or -s in rtconfig

Aside – IRR improvements

- prop-151 (Aftab): <u>restricting</u> non-hierarchical as-set
 - Helps fix name collision issues
 - as-set can ONLY be created by the maintainer of the ASN in the object

- Hierarchical as-set (RFC2622)
 - AS-DRUKNET-TRANSIT
 - non-hierarchical as-set
 - AS4826:AS-VOCUS
 - hierarchical as-set
 - <AS#>:AS-<as_set_name>

```
AS-AMAZON
as-set:
            Amazon ASNs
descr:
            AS-AMAZON-NA, AS-AMAZON-AP, AS-AMAZON-EU, AS16509:AS-AMAZON
members:
admin-c:
            AC6-ORG-ARIN
            AC6-ORG-ARIN
tech-c:
notify:
            noc@amazon.com
mnt-by:
            MAINT-AS16509
changed:
            noc@amazon.com 20230420 #17:54:10Z
source:
                AS-AMAZON
as-set:
tech-c:
                DUMY-RIPE
admin-c:
                DUMY-RIPE
mnt-by:
                KATERINA-MNT
                2022-10-23T19:05:59Z
created:
last-modified: 2022-10-23T19:05:59Z
                RTPF
```

```
as-set:
                AS4826: AS-VOCUS
                Vocus Communications AS4826 AS-SET
descr:
members:
                AS4826, AS4826: AS-CUSTOMERS
admin-c:
                VPL1-AP
tech-c:
remarks:
                For queries please email the below contacts
remarks:
                NOC - ******
remarks:
                IRR Data - ******
remarks:
                Peering enquiries - ******
mnt-by:
                MAINT-AU-VOCUS
last-modified:
                2022-05-29T00:28:23Z
                APNIC
source:
```


Aside – IRR improvements

RADB & RPKI

- RADB migrated to IRRDv4 on 13th November 2023
- New RPKI based features implemented
 - route/route6 objects that is inconsistent with a corresponding ROA will be rejected
 - RPKI Invalid objects will no longer be visible in a query
 - Not Found or Valid will not be affected

Prefix: 1.1.1.0/24

ASN: 13335

Route: 1.1.1.0/24 Origin: AS13335 Source: RADB

Route: 1.1.1.0/25 Origin: AS13335 Source: RADB

Route: 1.1.1.0/25 Origin: AS12345 Source: RADB

Route Origin Authorization (ROA)

- Binding of prefixes & nominated ASN
- Can be verified crypto-magically

• Multiple ROAs can exist for the same prefix

Prefix	202.144.128.0/20
Max-length	/20
Origin ASN	AS18024

route: 202.144.128.0/20

descr: RPKI ROA for 202.144.128.0/20 / AS18024

remarks: This AS18024 route object represents routing data retrieved from the RPKI. This route object is the result of an automated RPKI-to-IRR conversion process performed by IRRd.

max-length: 20

origin: AS18024

source: RPKI # Trust Anchor: apnic

- Route Origin Validation (ROV)
 - Validating received routes against validated ROAs
 - What can it help with?
 - Validate if an ASN is permitted to originate a route

ROA BCPs

- Use <u>max-length</u> judiciously
 - Only cover those prefixes announced in BGP ~ minimal ROA RFC9319
- Multi-ASN network?
 - Aggregates/sub-aggs: Transit ASN
 - More specifics: Access ASN
- ROA with **ASO** origin (RFC7607)
 - Not to be confused with undelegated/unassigned ASO ROA

- ROV BCPs
 - Default routes?
 - Secure the RTR session
 - SSH/MD5/TLS/TCP-AO/TLS
 - iBGP propagation RFC8097
 - Know your platform:
 - RTR refresh timer □ route refresh (Adj RIB In or soft reconfig in)

https://blog.apnic.net/2022/04/04/rpki-2021-retrospective/

https://blog.apnic.net/2020/04/10/rise-of-the-invalids/

- Are ROAs and ROV enough?
 - Forged origin ASN: will PASS the ROV test & will be accepted as GOOD
- Ideas?
 - Secure the PATH ~ <u>AS path validation</u> (per prefix) □ BGPsec

AS1 -> AS2

(Signed AS1)

BGPsec (RFC8205)

- Forward Path Signing
 - AS1 signs the message to AS2
 - AS2 signs the message to AS3/AS4, encapsulating AS1's message

Validation

- ROA check for the prefix and origin AS
- validate the received AS path against the chain of signatures (for each AS in the AS path) with AS key

- BGPsec (RFC8205) <u>Challenges</u>
 - Cannot jump across non-BGPsec routers/networks
 - traditional BGP (no BGPsec UPDATE messages)
 - Complex crypto & key distribution mechanism
 - CPU intensive (validate signatures)
 - Memory intensive (per prefix BGPsec UPDATE; new attributes to carry signatures and certs/key IDs for every AS in the AS path)
 - Possible hack
 - Routers could generate key pair -> send cert request to RPKI for signing
 - Lack of clarity
 - distributing the collection of certs required to yalidate path signature

- Route leak prevention
 - We already talked whitelist of customer/peer prefixes under IRR filtering
 - Don't announce routes/prefixes learned from your peers to other peers
 - Apply max prefix limits ~ doesn't help against partial leaks.

- Peerlock-lite ~ adapted from Job's NANOG67
 - Wikipedia says [7018, 7922, 3320, 3257, 6830, 3356, 2914, 5511, 3491, 1239, 6453, 6762, 1299, 12956, 701, 6461]
 - https://en.wikipedia.org/wiki/Tier 1 network
 - Will you sell transit to these networks?
 - REJECT any prefixes you receive from your customers which contains a big network ASN anywhere in the AS_PATH

- Peerlock~ adapted from Job's NANOG67 talk
 - Given ASNs A, B, C, D, and E as NTT's peers.
 - Peer A subscribes to the peerlock idea (Protected ASN) and indicates that peer B is an "Allowed Upstream"

OK: ^A_

OK: ^B A

NOT OK: ^C_A_

NOT OK: ^D_A_

NOT OK: ^E_A_

BGP Roles

- Update to the BGP OPEN message ~ BGP Role Capability
- Must be advertised to and received from a peer
 - If advertised and but not received: SHOULD ignore and establish traditional session
 - Strict mode: if advertised and not received REJECT

• Roles:

- Provider | Customer | Peer | RS | RS-client

Allowed relationship pairs

- Provider <-> Customer
- Customer <-> Provider
- RS <-> RS-Client
- RS-Client <-> RS
- Peer <-> Peer

BIRD

```
protocol bgp {
    local as 65001;
    neighbor 127.20.0.1 as 65000;
    multihop;
    source address 127.20.0.2;
    strict bind on;
    ipv4 {
        import all;
        export all;
    };
    local role customer;
}
```

FRR

```
router bgp 64502
neighbor 172.16.200.101 remote-as 64501
neighbor 172.16.200.101 ebgp-multihop
neighbor 172.16.200.101 passive
neighbor 172.16.200.101 local-role customer
```

https://blog.grator.net/en/route-leak-prevention-and-detection-rfc9234 162/

BGP Roles

- Only to Customer (OTC) attribute
 - Optional non-transitive attribute
- Ingress procedure:
 - If a route with the OTC Attribute is received from a Customer or an RS-Client, then it is a route leak and MUST be considered ineligible.

- Egress procedure:

• If a route contains the OTC
Attribute, it MUST NOT be
propagated to Providers, Peers,

Solution Status Version

BIRD + Appeared in 2.0.11

FRR + Appeared in 8.4

OpenBGPD + 7.5

Mikrotik Reduced functionality Appeared before RFC

https://blog.grator.net/en/route-leak-prevention-and-detection-rfc9234 162/

- ASPA (AS Provider Authorization)
 - Looks at malformed AS_PATHs from customers and peers to detect malicious hijacks and route leaks
 - ASPA is a digitally signed object that binds
 - Set of Provider ASNs (SPAS) to a Customer ASN (CAS) for a specific AFI signed by the holder of the Customer ASN
 - For Routing, the ASPA is an attestation
 - that the AS holder (CAS) has authorized the SPAS to propagate its announcements onwards (upstreams/peers)

• ASPA (AS Provider Authorization) object

```
ASPA := {
    customer_asn (signer)
    providers (authorized to propagate to peers/upstreams)
    AFI (IPv4/IPv6)
}
```


Pair Verification (AS1, AS2)

- Retrieve cryptographically valid ASPA in a selected AFI with a customer value of AS1.
- If there is no valid ASPA record for AS1 the procedure exits with an outcome of **unknown**
- If AS2 is included in the SPAS, then the procedure exits with an outcome of **valid**
- Otherwise, the procedure exits with an outcome of invalid

• ASPA in ACTION - 26 January'23

```
Hi all,
                                                                             Subject info access:
                                                                                                      rsync://rpki.august.tw/repo/AS945/0/AS945.asa
Since a few days OpenBGPD is able to do ASPA verification and filtering
                                                                                                      Sun 17 Dec 2023 14:17:12 +0000
                                                                              ASPA valid until:
based on the outcome. Right now my system detected one ASPA invalid path
                                                                              Customer AS:
                                                                                                      945
that is an actuall route leak. So it seems ASPA is working :)
                                                                              Provider Set:
                                                                                 1: AS: 1299
                                                                                 2: AS: 6939
    --- begin terminal transcript ---
                                                                                 3: AS: 32097
    $ bgpctl show rib in avs invalid as 945
                                                                                 4: AS: 50058
    flags: * = Valid, > = Selected, I = via IBGP, A = Announced,
                                                                             01/26/23 01:54:24 A 2606:b0c0:b00b::/48 13830 3356 6939 61138 945
           S = Stale, E = Error
                                                                             01/26/23 01:54:24 A 2606:b0c0:b00b::/48 13830 50058 50058 50058 50058 945
    origin validation state: N = not-found, V = valid, ! = invalid
                                                                             01/26/23 01:54:24 A 2606:b0c0:b00b::/48 14907 6939 61138 945
    aspa validation state: ? = unknown, V = valid, ! = invalid
                                                                             01/26/23 01:54:24 A 2606:b0c0:b00b::/48 14907 50058 50058 50058 50058 945
    origin: i = IGP, e = EGP, ? = Incomplete
                                                                             01/26/23 01:54:24 A 2606:b0c0:b00b::/48 206499 6939 61138 945
    flags vs destination
                                                             med aspath origin
                                    gateway
                                                     lpref
          V-! 2606:b0c0:b00b::/48 2001:4bf8::253
                                                                0 8271 6939 61138 945 i
                                                       100
    --- end terminal transcript ---
```

https://www.manrs.org/2023/02/unpacking-the-first-route-leak-prevented-by-aspa/

• ASPA ~ Timeline [BGP, RP, RTR, Signer]

```
    OpenBSD rpki-client and OpenBGPD
    Routinator, Krill and RTRTR, StayRTR, rpki-prover, and RIPE NCC have either released ASPA-capable software or are in advanced stages to do so.
    APNIC signer demo - <a href="https://github.com/APNIC-net/rpki-aspa-demo">https://github.com/APNIC-net/rpki-aspa-demo</a>
    6-10 months for IETF to ratify ASPA
    SIDROPS in later stages of specifying the ASPA standard
    Tom Harrison (APNIC RPKI Lead): will start hosted in 2024
    RIRs make Signers available
    COTS BGP Speakers implementations
    https://www.manrs.org/2023/05/estimating-the-timeline-for-aspa-deployment/
```


Need Help?

- Want to learn more about:
 - crafting route filters,
 - securing Internet routing best practices/tools
 - RPKI
 - ROV
 - MANRS
- Refer to NSRC's free training videos at:
 - https://learn.nsrc.org/bgp

Troubleshooting Tools

- How/where do engineers, researchers, and analysts find the data about the incidents discussed so far?
 - Many network operators (ISPs) run their own looking glass.
 - Many of us rely on globally distributed collectors like:
 - RouteViews (the original looking glass since 1995), and
 - RIPE's RIS (routing information service)

RouteViews

- A collaborative router looking glass to share BGP views among network operators and researchers.
 - RouteViews was founded at the University of Oregon's Advanced Network Technology Center (ANTC) in 1995.
 Data archives (*every 2 hours*) began in 1997 and amount to 50TBs (compressed) today.

 The group is currently led by the Network Startup Resource Center (NSRC) group engineering team at the University of Oregon.

Why RouteViews?

- Originally conceived in 1995 as a tool for Internet Operators to look at the BGP table from different locations/backbones around the world to <u>troubleshoot</u> and assess:
 - reachability, hijacks, peer visibility, mass withdrawals, and RPKI status
- The 27-year data-set of BGP information archived by RouteViews since 1997 has become an invaluable research resource
 - RouteViews data has been used in over 1000 research papers.
 - http://www.routeviews.org/routeviews/index.php/papers/

RouteViews Collector Map

Peering with RouteViews

- Send full table (if you can)
- Remove default routes
- Remove NULL routes
- Remove RFC1981 addresses
- RouteViews don't accept/want ADD-PATH (TX/RX)
- RouteViews don't send routes to you (ONLY collects)
- When peering with multi-hop collectors, set ebgp-multihop

https://www.routeviews.org/routeviews/index.php/peering-request-form/

khàawp Khun Kráp ขอบคุณ ครับ

